ペアリングの応用

光成滋生

last update: 2025/11/04

概要

目的

- ペアリングの性質, BLS署名の理解
- 秘密分散
- DKG

ペアリング

type-1ペアリング (Weil pairing)

- E/\mathbb{F}_p : 楕円曲線, $G_1:=\langle P_1\rangle=\{0,P_1,2P_1,\ldots,(r-1)P_1\}$: 位数 r の加法巡回群 乗法巡回群表記のテキストもある
- $G_T:=\langle g
 angle:=\left\{1,g,g^2,\ldots,g^{r-1}
 ight\}\subseteq\mathbb{F}_{p^k}$: 1の r 乗根 g からなる乗法巡回群
- ullet $e:G_1 imes G_1 o G_T$ がペアリングとは $e(aP_1,bP_1)=g^{ab}$ を満たすもの

双線型性

- ullet $P,Q,R\in G_1$ に対して $P=aP_1,Q=bP_1,R=cP_1$ とすると
 - $\circ \ e(P+Q,R) = e(P,R)e(Q,R) = g^{(a+b)c}$
 - $\circ \ e(P,Q+R) = e(P,Q)e(P,R) = g^{a(b+c)}$
 - $lacksymbol{\blacksquare}$ G_T も加法群とみなすと通常の f(x+y)=f(x)+f(y) の線型性の形
 - 2変数の両方に関して線型なので双線型

ECDLPとペアリングの関係

もともとはECDLPを解くために利用された

- $P,aP \in G_1$ が与えられたときに a を求めたい
 - $\circ g = e(P,P), e(P,aP) = g^a$ なので g,g^a に関するDLPが解ければECDLPも解ける
 - MOV (Menezes, Okamoto, Vanstone) リダクションという

3人の間の鍵共有 (Joux, 2000)

- ullet A, B, C がそれぞれ秘密鍵 $a,b,c\in\mathbb{F}_r$ を持ち aP,bP,cP を共有する
- ullet A は $e(bP,cP)^a$, B は $e(cP,aP)^b$, C は $e(aP,bP)^c$ を計算する
 - \circ それぞれ g^{abc} になるので鍵共有ができた
- ◆ より多数の鍵共有ができるか(多重線型写像の構成)は未解決(否定的な結果が優勢)

主な安全性仮定の問題

- CBDH (Computational Bilinear DH): (P,aP,bP,cP) に対して $e(P,P)^{abc}$ を計算する
- DBDH (Decisional BDH): (P,aP,bP,cP,g') に対して $g'=e(P,P)^{abc}$ を判定する

BLS署名

CBDH仮定の元で安全な署名

- Boneh, Lynn, Shacham (2001)
 - $\circ~H:\left\{ 0,1
 ight\} ^{st}
 ightarrow G_{1}$ をハッシュ関数
- ullet KeyGen: 署名鍵: $s \leftarrow \mathbb{F}_r$,検証鍵 $P := sP_1$
- Sign: メッセージ $\,m\,$ に対して $\,\sigma:=sH(m)\,$
- Verify: $e(H(m),P)=e(\sigma,P_1)$ ならvalid
 - \circ 正当性: LHS $=e(H(m),sP_1)=e(sH(m),P_1)= ext{RHS}$

特徴

ullet 署名長が短い(G_1 の要素1個), 乱数不要の決定的アルゴリズム

type-3ペアリング

ペアリングの重要性と高速化の必要性

- ペアリングの重要性に伴いより演算効率のよい写像が望まれている
- 現在の主流は非対称ペアリング $e:G_1 imes G_2 o G_T$:で $G_1
 eq G_2$ かつ G_1 と G_2 の間に効率的な同型写像が存在しない

BLS12-381曲線 (Barreto, Lynn, Scott)

- BLS写像のBLSとは無関係
- E/\mathbb{F}_p : $y^2=x^3+4$ (p: 381bit素数)
- ullet 写像先の $G_T\subseteq \mathbb{F}_{p^{12}}$ は \mathbb{F}_p のk=12次拡大体(BLS12の12)
- $G_1:=\langle P_1 \rangle \subseteq E(\mathbb{F}_p)$: P_1 の位数は255bit素数 r
- ullet $G_2:=\langle P_2
 angle\subseteq E'(\mathbb{F}_{p^2})$: 2次拡大体上の楕円曲線 $E':y^2=x^3+4(1+i),i^2=-1$
- $G_T=\langle g
 angle=\langle e(P_1,P_2)
 angle$ \circ $e(aP_1,bP_2)=e(P_1,P_2)^{ab}=g^{ab}$ を満たす

type-3ペアリングでのBLS署名

type-1版をtype-3版に適用する

- ullet $G_i:=\langle P_i
 angle$, $H_i:\{0,1\}^* o G_i$ (i=1,2): ハッシュ関数, $b\in\{1,2\}$ を固定
- 署名鍵: $s \leftarrow \mathbb{F}_r$ に対して
 - \circ b=1 のとき 検証鍵 $P:=sP_1\in G_1$, 署名 $\sigma:=sH_2(m)\in G_2$
 - ullet 検証: $e(P,H_2(m))=e(P_1,\sigma)$ ならvalid
 - \circ b=2 のとき 検証鍵 $P:=sP_2\in G_2$, 署名 $\sigma:=sH_1(m)\in G_1$
 - ullet 検証: $e(H_1(m),P)=e(\sigma,P_2)$ ならvalid
- 検証鍵が小さい方がよいなら b=1, 署名が小さい方がよいなら b=2
 - \circ Ethereumは b=1 (検証鍵が G_1 の要素)を採用(以下では b=1 とする)

安全性仮定

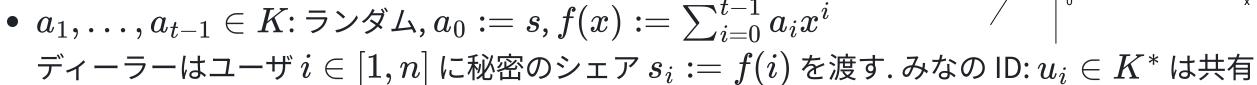
ullet co-CDH仮定: $P_1,aP_1\in G_1,P_2\in G_2$ に対して aP_2 が計算困難(b=2 も同様)

Shamirの秘密分散法

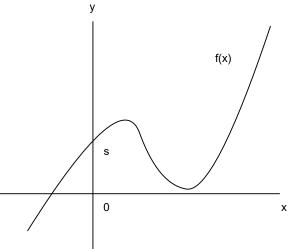
(t,n) 閾値秘密分散 SSS (Shamir's Secret Sharing)

- ullet K: 有限体, 秘密 $s\in K$ を n 個のシェア $s_1,\ldots,s_n\in K$ に分割
- 任意の t 個のシェアで秘密を再構成可能

Lagrange補間による構成法



- ullet n 人のうち t 人の $S:=\{u_{i_1},\ldots,u_{i_t}\}$ が集まりシェアを共有
 - \circ $u\in S$ に対して $\Delta_{u,S}(x):=\prod_{v\in S\setminus u}rac{x-v}{u-v}$ は t-1 次多項式 $\Delta_{u,S}(u)=1$ の $\Delta_{u,S}(w)=0$ ($w\in S\setminus u$) なので $g(x):=\sum_{j=1}^t s_{u_j}\Delta_{u_j,S}(x)$ は $g(u_j)=s_{u_j}$ となり f(x) に一致する(t-1 次曲線は t 個の点で一意に定まる)
- 特にf(0) = sが求まる
- ullet t-1以下の人数が集まっても $f(0)\in K$ は不定なので情報量的安全性を持つ



SSSの例

(2,3) 閾値秘密分散

- ullet 秘密 $s=12\in \mathbb{F}_{257}, k=2$ なので $s_1=100$ を選び1次多項式を $f(x)=s+s_1x$ とする
- ユーザIDは1, 2, 3とする. シェアは $s_1=f(1)=112, s_2=f(2)=212, s_3=f(3)=55$

シェアの再構成

- ユーザ1と3が集まった場合: $S = \{1,3\}$
 - $\circ \ arDelta_{1,\{1,3\}}(x) = rac{x-3}{1-3} = -x/2 + 3/2$, $arDelta_{3,\{1,3\}}(x) = rac{x-1}{3-1} = x/2 1/2$
 - $\circ \ f(x) = 112(-x/2+3/2) + 55(x/2-1/2) = (57/2)x + (281/2)$
 - \circ $f(0) = 281/2 \equiv 12 \pmod{257}$ が得られる

応用例

- 社長の秘密鍵を取締役員でシェア
 - 複数の取締役員の賛成で秘密鍵を復元

BLS署名への秘密分散の適用

BLS署名の構成

- ullet $G_1:=\langle P_0
 angle$, $G_2:=\langle Q
 angle$, $H:\{0,1\}^* o G_2$: ハッシュ関数とする
- ullet 署名鍵 $s\in \mathbb{F}_r$ を (t,n) 閾値秘密分散で分割しシェア s_i をユーザID u_i に配付

ユーザiの署名・検証

- 署名鍵: s_i , 検証鍵 $P_i := s_i P \in G_1$
- ullet メッセージmに対する署名: $\sigma_i:=s_iH(m)\in G_2$
- ・ 検証: $e(P_i, H(m)) = e(P_0, \sigma_i)$ ならvalid

署名の復元

- ullet t 人のユーザの署名 $ig\{\sigma_{i_j}ig\}$ から $\sigma:=\sum_{j=1}^t\sigma_{i_j}\Delta_{u_{i_j},S}(0)H(m)=sH(m)$ が得られる
 - \circ 検証鍵と署名の両方が「署名鍵 $imes G_i$ の元」の形なのでLagrange補間が可能
- ullet 全体の検証鍵 $P=sP_0$ で検証可能: $e(P,H(m))=e(P_0,\sigma)$ ならvalid
- 単なる秘密分散と異なり署名は繰り返し利用可能:多数決にも利用できる

集約署名

複数の署名の集約

- ullet ユーザiの署名鍵 $s_i\in \mathbb{F}_r$,検証鍵 $P_i:=s_iP_0\in G_1$
- 集約検証鍵: $P:=P_1+\cdots+P_n=sP_0$ $(s:=s_1+\cdots+s_n$ は誰も知らない)
- ullet メッセージm に対するユーザの署名: $\sigma_i := s_i H(m) \in G_2$
 - \circ 各ユーザの署名の検証: $e(P_i,H(m))=e(P_0,\sigma_i)$ ならvalid
- 集約署名: $\sigma:=\sigma_1+\dots+\sigma_n=sH(m), e(P,H(m))=e(P_0,\sigma)$ ならvalid

Rogue key攻撃(ユーザnが不正な (rogue) 攻撃者とする)

- 検証鍵: $P_n := aP_0 (P_1 + \cdots + P_{n-1})$, 署名: $\sigma_n := aH(m) (\sigma_1 + \cdots + \sigma_{n-1})$
- 集約検証鍵: $P=aP_0$, 集約署名: $\sigma=aH(m)$ は検証を通ってしまう(a は自由に選ぶ)
- 対策: PoP (Proof of Possession)
 - 事前に各ユーザは自身の検証鍵を自身の署名鍵で署名してみなが検証しておく
 - 攻撃者は自身の署名鍵を知らないので署名できない

ディーラーの不正対策

問題点

- 秘密分散のディーラーに権限集中
 - \circ 秘密情報 s に対して $f(x) = s + s_1 x + \cdots + s_{t-1} x^{t-1}$ を作り $f(u_i)$ を配付
 - \circ 各ユーザの $f(u_i)$ を知っている/不正なシェア配付の可能性

検証可能な秘密分散VSS (Verifiable Secret Sharing)

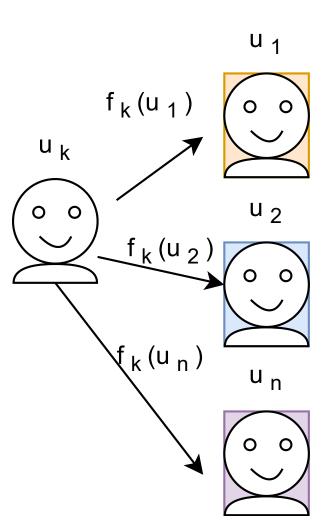
- 各ユーザが受け取ったシェアが正しいことを各自が検証可能にする
- ディーラーはシェア配付時に $\{Q_i\} = \{sP_0, s_1P_0, \ldots, s_{t-1}P_0\}$ を公開
- ullet 各ユーザは $sP_0+u_i(s_1P_0)+\cdots+u_i^{t-1}(s_{t-1}P_0)=f(u_i)P_0$ を検証

権限集中の対策は?

分散鍵生成 DKG (Distributed Key Generation)

全員がディーラーになる

- ullet ユーザID $u_1,\ldots,u_n(
 eq 0)$ は既知
- ユーザkが $f_k(x)=\sum_{i=0}^{t-1}s_{k,i}x^i$ を作り ユーザjに $f_k(u_j)$ を秘密裏に配付, $\left\{s_{k,i}P_0
 ight\}_{i=0,\ldots,t-1}$ を公開 (VSS)
 - 受け取ったユーザはシェアの正しさを確認する
- ユーザkはユーザj(
 eq k)からのシェア $f_j(u_k)$ を全て足す $s_k := \sum_j f_j(u_k)$ を自身の最終シェアとする
 - \circ 対応する検証鍵 $s_k P_0 = \sum_j f_j(u_k) P_0$ は誰でも計算可能
- ullet $s:=\sum_{k=1}^n s_{k,0}$ が全体の秘密鍵, $P:=\sum_{k=1}^n s_k P_0=s P_0$ が公開鍵
- ullet 秘密分散の線型性から $\{s_k\}$ はs のシェアとなっている



後出しの不正を防ぐ

様々な改善

- ハッシュを使って後出しジャンケンを防止
 - \circ $h_i:=Hash(s_{k,0}P_0,\ldots,s_{k,t-1}P_0)$ を全員が公開した後, $\{s_{k,i}P_0\}$ を公開して検証
 - より安全にはコミットメント(余裕があれば後の講義で)を使う
- 違反者の除外
- ユーザ k のPoPを実行
- 詳細は R.Gennaro, "Secure Distributed Key Generation for Discrete-Log Based Cryptosystems", 2006など