量子計算機と暗号解読

光成滋生

last update: 2025/11/25

概要

古典計算機

- 現在(古典) 計算機はビット(0 or 1) を基本単位として計算
- 論理ゲート: AND, OR, NOTなどのビット演算の組合せ

量子計算機 QC (Quantum Computer)

- 量子力学で記述される量子状態を利用した計算機
 - 攻撃: 量子計算機を利用して暗号技術を破る量子アルゴリズム
 - 対策: 耐量子計算機暗号(量子計算機が登場しても安全な現在の計算機で実行できる暗号)
 - 量子鍵配送(量子暗号):量子の性質を利用した秘密鍵を共有する技術

粒子と波

- 粒子は1個,2個と数えられ,同じ場所に複数個存在できない
- 波は数えられない広がりを持った状態
- 複数の波が重なり合って干渉する

量子

粒子と波の両方の性質をもった状態

• 電子, 光子, 原子などの量子状態を最小単位 (qubit) として制御することで計算

量子計算機の方式例

- 超電導・イオントラップ・中性原子・光など
 - それぞれの方式の詳細は本講演の範囲外
- 量子状態の持続時間(コヒーレンス時間)・速度・エラー率・動作温度が一長一短
- qubit を増やすだけでなく、エラー率の低減・大規模化・運用コストなども課題

誤り訂正

- 量子状態は外部環境の影響を受けやすく誤りが発生しやすい
- 誤り訂正の技術を使って複数の物理qubitで1個の論理qubitを表す
- 実際に計算できるためには誤り耐性量子計算FTQC(Fault-Tolerant QC)が必要
- 実用的なものは100万 qubit程度必要と言われている

量子計算機の実装例

超伝導方式

- Google: 2019年 53 qubit, 2024年 105 qubit
- IBMのロードマップ: 2021年 127 qubit, 2022年 433 qubit, 2023年 1121 qubit Condor
- 大阪大学: 2023年 64 quibit, 富士通と理研: 2025年 256 qubit

イオントラップ方式

- 2023/6: lonQが29 quibit, 2025: Quantinuum 56 qubit
- 2025/6: 1qubitで1/670万のエラー率

中性原子方式

- 2023/10: Atom Computing 1180 quibit
- 2025/9: 6100 qubit, 0.02%のエラー率
- その他: 電子, 光, マイクロ波 etc.

量子計算機に必要な線形代数の復習

行列

- 複素数を縦にn 個, 横にm 個並べた $A=(a_{ij})$ $(a_{ij}\in\mathbb{C})$ をn 行 m 列 (複素)行列という
 - \circ その全体を $M_{n,m}(\mathbb{C})$ と書く(n=m のときは n 次正方行列で $M_n(\mathbb{C})$ と書く)
- ullet $A\in M_{n,m}(\mathbb{C})$, $B\in M_{m,l}(\mathbb{C})$ に対して行列の積 $AB:=((\sum_{k=1}^m a_{ik}b_{kj})_{ij}\in M_{n,l}(\mathbb{C})$
- ullet A^T : 行列 A の転置行列 $A^T:=(a_{ji})$ は m 行 n 列の行列
- ullet A のエルミート共役: $A^{\dagger}:=\overline{A}^T=(\overline{a_{ji}})$ $(\overline{a_{ji}}$ は a_{ij} の複素共役)
 - $\circ \ (AB)^\dagger = (\overline{(AB)_{ji}}) = \overline{(\sum a_{jk}b_{ki})} = B^\dagger A^\dagger$

ベクトル

- ullet n 次元縦ベクトル $v,w\in M_{n,1}(\mathbb{C})$ の内積: $v\cdot w:=v^\dagger w=\sum_{i=0}^n\overline{v_i}w_i\in\mathbb{C}$
- vのノルム(長さ): $|v|:=\sqrt{v\cdot v}$, 単位ベクトル: ノルムが1のベクトル
- n 個の n 次元縦ベクトル e_1,\ldots,e_n が $e_i\cdot e_j=\delta_{ij}$ のとき $\{e_i\}$ を正規直交基底という \circ $\{e_i:=(0,\ldots,0,1,0,\ldots,0)^T\}$ (i 番目だけ1)は標準基底

ユニタリ行列

量子力学の演算に必要な行列

- ullet ユニタリ行列: $U^\dagger U = I$ を満たす n 次行列 U(I は単位行列),その全体を U(n) と書く
- ullet $U\in U(n)$ なら $U^{-1}=U^{\dagger}$ なので U は可逆
- ユニタリ行列はベクトルの長さを変えない
 - $v \circ v$ が |v|=l なら $l^2=v^\dagger v=v\dagger (U^\dagger U)v=(Uv)^\dagger (Uv)=|Uv|^2$ なので |Uv|=l
 - \circ 同様に $\{e_i\}$ が正規直交基底なら $\{Ue_i\}$ も正規直交基底($(Ue_i)^\dagger(Ue_j)=\delta_{ij}$)
 - \circ 特にUは単位ベクトルを単位ベクトルに移す

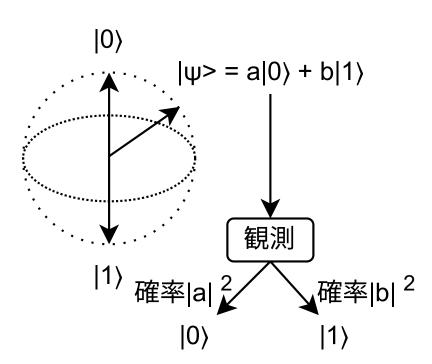
固有値と固有ベクトル

- ullet A: 行列, v: ベクトル, $\lambda\in\mathbb{C}$ について $Av=\lambda v$ を満たすとき v: A の固有ベクトル, λ : 固有値
- ullet A がユニタリ行列のとき |v|=1 とすると $|v|=|Av|=|\lambda||v|$ なので $|\lambda|=1$
 - \circ ユニタリ行列の固有値は絶対値が1の複素数なので $\lambda=e^{i heta}$ ($heta\in\mathbb{R}$) と表せる

量子計算機の基礎

QC の演算の基本単位: 量子ビット (qubit)

- ullet 1qubitとは複素2次元単位ベクトル $v:=(a,b)^T\in M_{2,1}(\mathbb{C})$
 - |v|=1より $|a|^2+|b|^2=1$
 - \circ $v=a(1,0)^T+b(0,1)^T$ は標準基底による表現
 - \circ 慣習的にベクトル v と標準基底 $\left\{(1,0)^T,(0,1)^T\right\}$ を $|\psi\rangle$, $\{|0\rangle,|1\rangle\}$ と書き $|\psi\rangle=a|0\rangle+b|1\rangle$ と表記する $ab\neq 0$ のとき $|\psi\rangle$ は $|0\rangle,|1\rangle$ の混合状態という



観測の原理

ullet $|\psi
angle$ を基底 (|0
angle, |1
angle) に従って「観測」すると $|a|^2$ の確率で $|0
angle, |b|^2$ の確率で |1
angle が得られる

位相

- $m{ullet}$ $m{ heta}\in[0,1]$ について $|e^{i heta}|=1$ なので $|\psi'
 angle:=e^{i heta}|\psi
 angle$ の観測結果は $|\psi
 angle$ の観測結果と同じ分布
- ullet $|\psi
 angle$ と $|\psi'
 angle$ は物理的に区別がつかない: 位相変換に対して不変, $e^{i heta}$ を位相因子という

量子ゲート

qubitの状態を変換する演算

- ullet 1 qubit $|\psi
 angle=(a,b)^T$ に対して $U\in U(2)$ を掛ける操作: $|\psi
 angle\mapsto U|\psi
 angle$ を量子ゲートという
 - $\circ~U$ はユニタリ行列なので $|U|\psi
 angle|=||\psi
 angle|=1$ であり, $U|\psi
 angle$ もqubitの状態を表す
- ユニタリ行列は可逆なので量子ゲートは可逆な変換しかできない
 - 例えば古典の AND ゲートは不可逆なので量子ゲートでは実現できない
 - \circ 後述する複数のqubitを用いて $(x,y,z)\mapsto (x,y,z\oplus (x\wedge y))$ のような形で実現する

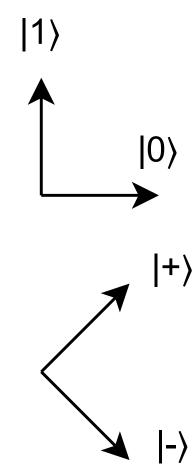
複製不可能性定理 (no-cloning theorem)

- 未知の量子状態の複製は不可能
- ユニタリ行列の性質から導かれる
 - 古典的な誤り訂正を適用できない
 - 量子誤り訂正符号という異なる手法・理論がひつよう

量子ゲートの例

代表的な量子ゲート

- ullet X (NOT) ゲート: $X:=egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$
 - $|\circ|X|0
 angle=|1
 angle=(1,0)^T$, $X|1
 angle=|0
 angle=(0,1)^T$: 基底の反転
- アダマールゲート: $H:=(1/\sqrt{2})\begin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}$
 - $| \circ | +
 angle := H | 0
 angle = (1/\sqrt{2})(|0
 angle + |1
 angle) = (1/\sqrt{2})(1,1)^T$
 - $|angle := H|1
 angle = (1/\sqrt{2})(|0
 angle |1
 angle) = (1/\sqrt{2})(1,-1)^T$
- 位相回転: $R(heta) := egin{pmatrix} 1 & 0 \ 0 & e^{i heta} \end{pmatrix}$
 - $|\circ|R(heta)|0
 angle = |0
 angle, R(heta)|1
 angle = e^{i heta}|1
 angle$
 - ullet $|1\rangle$ の位相を heta だけ回転させる
 - \circ $T:=R(\pi/4), S:=R(\pi/2)$ と略記することが多い($T^2=S$)



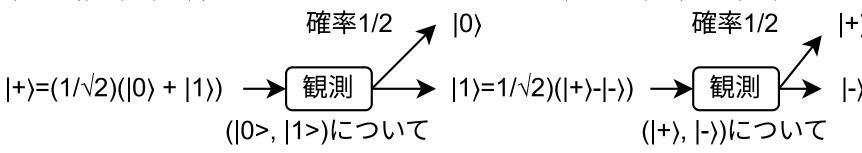
異なる基底での観測

相互関係

- ullet $|+
 angle=(1/\sqrt{2})(|0
 angle+|1
 angle), |angle=(1/\sqrt{2})(|0
 angle-|1
 angle)$
- $|0
 angle=(1/\sqrt{2})(|+
 angle+|angle)$, $|1
 angle=(1/\sqrt{2})(|+
 angle-|angle)$

基底を取り替えて観測する

- ullet (|0
 angle, |1
 angle) 以外の基底でも観測できる
- $(|+\rangle, |-\rangle)$ も別の基底なので $|+\rangle, |-\rangle$ で観測してみる
- $|0\rangle$ を $(|0\rangle, |1\rangle)$ に関して観測すると確率 1 で $|0\rangle$
- ullet |0
 angle を (|+
 angle, |angle) に関して観測すると確率 1/2 で |+
 angle か |angle



複数個のqubit

テンソル積

- 2個の2次元ベクトルの基底を組み合わせて4次元ベクトル空間の基底を作る(<mark>合成系</mark>という)
 - $(a,b)\otimes(c,d):=(ac,ad,bc,bd)$ (表記の都合で横ベクトルで表す)
- ullet 独立に準備された2個の1 qubit $|\psi_1
 angle$ と $|\psi_2
 angle$ がある状態を $|\psi_1
 angle\otimes|\psi_2
 angle$ と表す
- 複素4次元ベクトル空間 升 の基底
 - $| 00 \rangle := | 0 \rangle \otimes | 0 \rangle = (1,0) \otimes (1,0) = (1,0,0,0)$
 - $| 01 \rangle := | 0 \rangle \otimes | 1 \rangle = (1,0) \otimes (0,1) = (0,1,0,0)$
 - $| | 10 \rangle := | 1 \rangle \otimes | 0 \rangle = (0,1) \otimes (1,0) = (0,0,1,0)$
 - $| 0 | 11 \rangle := | 1 \rangle \otimes | 1 \rangle = (0,1) \otimes (0,1) = (0,0,0,1)$
- 一般に \mathcal{H} の元は $c_{00}|00\rangle+c_{01}|01\rangle+c_{10}|10\rangle+c_{11}|11\rangle$ ($c_{ij}\in\mathbb{C},\sum|c_{ij}|^2=1$) の形。 この基底で観測したとき $|ij\rangle$ が得られる確率は $|c_{ij}|^2$
- n個のqubitの状態は 2^n 次元複素ベクトルとなる
 - $|i_0i_1\cdots i_{n-1}
 angle$ をiを2進数展開 $(i=\sum_k i_k 2^k)$ したものとみなして|i
 angle と略記する |i|

量子もつれ (Entanglement)

合成系の中でテンソル積で表現できない状態

- テンソル積で表現できる例
 - $|\circ|(1/\sqrt{2})(|0
 angle+|1
 angle)\otimes|0
 angle=(1/\sqrt{2})(|00
 angle+|10
 angle)$
 - $|\circ|(1/\sqrt{2})(|0
 angle + |1
 angle) \otimes (1/\sqrt{2})(|0
 angle + |1
 angle) = (|00
 angle + |01
 angle + |10
 angle + |11
 angle)/2$
- テンソル積で表現できない例
 - $|\psi
 angle:=(1/\sqrt{2})(|00
 angle+|11
 angle)$
 - ullet $|\psi
 angle = |\psi_1
 angle \otimes |\psi_2
 angle$ と表現できない
 - $|\psi_1\rangle=a|0\rangle+b|1\rangle, |\psi_2\rangle=c|0\rangle+d|1\rangle$ とすると $ac=1/\sqrt{2}, bd=1/\sqrt{2}, ad=0, bc=0$ となり矛盾
- このように状態が各qubitの状態のテンソル積で表現できないとき $|\psi\rangle$ は<mark>量子もつれの状態</mark>にあるという

部分測定

部分測定の例

- $|\psi
 angle=s|00
 angle+t|01
 angle+u|10
 angle+v|11
 angle$ とする
- ullet 1個目のqubitについて測定して |0
 angle となるのは s|00
 angle か t|01
 angle のどちらかで確率は $|s|^2+|t|^2$
 - \circ 測定後の状態は $|\psi'
 angle = s|00
 angle + t|01
 angle$ を正規化したもの
 - ullet ベクトル v
 eq 0 の正規化とはノルムを1にすること: $v \mapsto v/|v|$
 - $|\psi'
 angle|^2=|s|^2+|t|^2$ なので $|\psi'_0
 angle:=|\psi'
 angle/|\psi'|=(s|00
 angle+t|01
 angle)/\sqrt{|s|^2+|t|^2}$
- ・ 同様に|1
 angleとなる確率は $|u|^2+|v|^2$,測定後は $|\psi_1'
 angle:=(u|10
 angle+v|11
 angle)/\sqrt{|u|^2+|v|^2}$

テンソル積の場合

- ・ $|\psi_1
 angle=a|0
 angle+b|1
 angle, |\psi_2
 angle=c|0
 angle+d|1
 angle$ で $a,b,c,d>0, |\psi
 angle=|\psi_1
 angle\otimes|\psi_2
 angle$ なら s=ac,t=ad,u=bc,v=bd となり $|s|^2+|t|^2=|a|^2(|c|^2+|d|^2)=|a|^2$
- ・ 確率 a^2 で $|\psi_0'
 angle=(ac|00
 angle+ad|01
 angle)/a=|0
 angle\otimes|\psi_2
 angle$
- 確率 b^2 で $|\psi_1'
 angle=(bc|10
 angle+bd|11
 angle)/b=|1
 angle\otimes|\psi_2
 angle$. 第2qubitはどちらも同じ(独立) $_{13/28}$

部分測定後の独立性

量子もつれの場合

- $|\psi
 angle=(1/\sqrt{2})(|00
 angle+|11
 angle)$ の場合
- ullet 1個目のqubitを観測して |0
 angle が得られる確率は 1/2, 測定後の状態は |00
 angle
- ullet 1個目のqubitを観測して |1
 angle が得られる確率は 1/2, 測定後の状態は |11
 angle
 - \circ 1個目のqubitが |0
 angle ならば2個目も |0
 angle, 1個目が |1
 angle なら2個目も |1
 angle

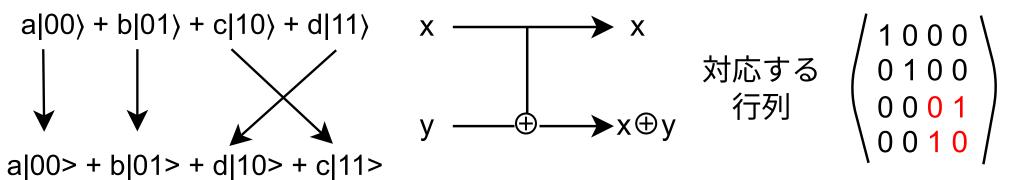
2個のqubitが独立でない

- 1個目のqubitの状態が決まると2個目の状態も決まる
 - 2個のqubitは離れた状態でも成り立つ
 - 量子テレポーテーションや量子暗号(量子鍵配送)のキーとなる現象

CNOT (Controlled NOT) ゲート

2個のqubitに対する量子ゲート

- ullet CNOT(a|00
 angle + b|01
 angle + c|10
 angle + d|11
 angle) := a|00
 angle + b|01
 angle + d|10
 angle + c|11
 angle
 - 後ろ2個の基底の係数が入れ代わる

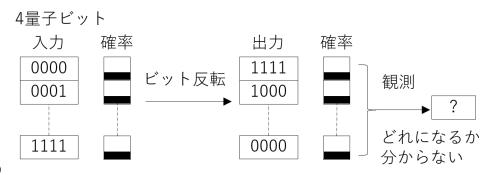


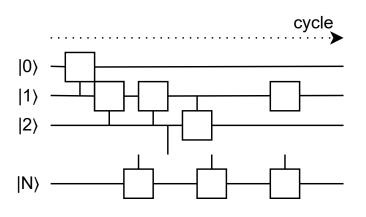
- \circ 状態 \ket{xy} $(x,y\in\{0,1\})$ に対して x=0 のとき y はそのまま, x=1 のとき y は反転
- $\circ \ (x,y) \mapsto (x,x \oplus y)$ と表せる
- $x=(1/\sqrt{2})(|0\rangle+|1\rangle), y=|0\rangle$ とすると $x\otimes y=(1/\sqrt{2})(|00\rangle+|10\rangle)$ $\circ CNOT(x\otimes y)=(1/\sqrt{2})(|00\rangle+|11\rangle)$ となり量子もつれの状態になる
- 量子計算の普遍性: H,T,CNOT の組合せで任意の量子ゲートを近似できる \circ これら(と $S=T^2$ も追加して)を使って量子回路を組み立てる

量子計算機における計算

量子計算機の演算処理

- ullet n qubitの状態は 2^n 通りのパターンが重なり合った状態
 - $|\psi
 angle = \sum_{i=0}^{2^n-1} c_i |i
 angle \ (c_i \in \mathbb{C}, \sum |c_i|^2 = 1)$
- ullet $|\psi
 angle$ に標準量子ゲートなどを順番に作用させる回路を作る
 - 遠いところはSWAP演算(3個のCNOTで構成)などの組合せ
- 最終的には観測しないと結果を得られない
 - \circ そのとき $|c_i|^2$ の確率で |i
 angle に確定し, これが計算結果
 - \circ もし $|c_0|=\cdots=|c_{2^n-1}|$ ならどの|i
 angleが得られるかランダム
- ullet 望ましい答えが観測されるように $|c_i|$ を大きくするのが肝
 - 古典計算機における分岐・ループ処理は存在しない
 - 10回ループする処理は10回分の量子ゲートを展開する(任意回ループは基本的に不可能)
 - イメージは同期的に動くデータフロー型計算機に近い

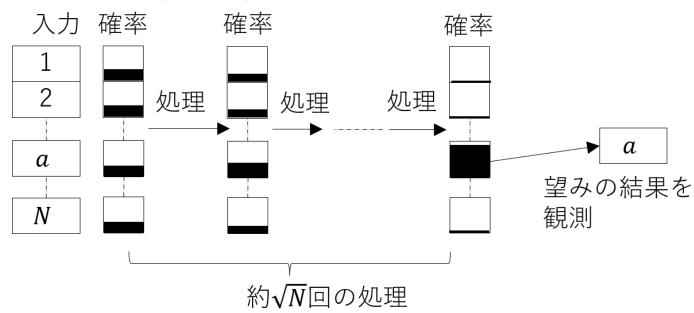




Groverのアルゴリズム

N 個のデータから特定の条件を満たすものを一つ探す

- 関数 f(x)=1 if x=a, それ以外は0 において f(x)=1 となる x=a を探す
- ullet 古典計算機なら平均 N/2 回の試行が必要
- ullet Groverのアルゴリズムは $O(\sqrt{N})$ 回の量子クエリで可能
 - $O(\sqrt{N})$ 回のクエリで十分高い確率で f(x)=1 なる x が見つかるということ n量子ビット $(N=2^n)$



2qubitに対するアダマールゲート

$H\otimes H=H^{\otimes 2}$ と表記

・
$$H=(1/\sqrt{2})\begin{pmatrix}1&1\\1&-1\end{pmatrix}$$
なので $\circ~H^{\otimes 2}|00
angle=rac{1}{2}(|00
angle+|01
angle+|10
angle+|11
angle)$

$$\circ$$
 $H^{\otimes 2}|01
angle=rac{1}{2}(|00
angle-|01
angle+|10
angle-|11
angle)$

$$|\circ|H^{\otimes 2}|10
angle=rac{1}{2}(|00
angle+|01
angle-|10
angle-|11
angle)$$

$$|\circ|H^{\otimes 2}|11
angle=rac{1}{2}(|00
angle-|01
angle-|10
angle+|11
angle)$$

$$ullet$$
 $H^{\otimes 2}|i
angle=rac{1}{2}\sum_{j=0}^3(-1)^{i\cdot j}|j
angle$ ($i=0,1,2,3$)

$$\circ$$
 $i \cdot j$ は i,j を2進数展開したときの各桁の積の和($\mod 2$)

$$\circ$$
 例えば $i=2=10$ 2, $j=3=11$ 2 のとき $i\cdot j=1 imes 1+0 imes 1=1$

$$ullet$$
 $H^{\otimes n}|i
angle=(1/2^{n/2})\sum_{j=0}^{2^n-1}(-1)^{i\cdot j}|j
angle$ ($i=0,1,\ldots,2^n-1$)

一般の関数に対する量子ゲート

補助ビット (ancilla) の導入

- 関数 $f: \{0,1\}^n o \{0,1\}$ に対して $U_f: |x\rangle \otimes |y\rangle \mapsto |x\rangle \otimes |y \oplus f(x)
 angle$ と定義する
 - \circ x: n qubit, y: 1 qubit (y が補助ビット)
- ullet このとき U_f はユニタリ行列になる
 - $0 \circ U_f(U_f(\ket{x}\otimes\ket{y}))=\ket{x}\otimes\ket{y\oplus f(x)\oplus f(x)}=\ket{x}\otimes\ket{y}$,つまり $U_f^{-1}=U_f$
- 位相キックバック
 - $|y
 angle:=|angle=(1/\sqrt{2})(|0
 angle-|1
 angle)$ とする
 - ullet f(x)=0 のとき $U_f(\ket{x}\otimes\ket{-})=\ket{x}\otimes\ket{-}$
 - ullet f(x)=1 のとき $U_f(\ket{x}\otimes\ket{-})=-\ket{x}\otimes\ket{-}$
 - つまり $U_f(|x\rangle\otimes|-\rangle)=(-1)^{f(x)}|x\rangle\otimes|-\rangle$ f(x) を位相部分に埋め込む演算 $U_f(|x\rangle)=(-1)^{f(x)}|x\rangle$ とみなす

Shorのアルゴリズム

n=pq(p,qは素数)を素因数分解するアルゴリズム

- 位数計算問題: 与えられた $g \in [1, n-1]$ の位数を求める問題
 - \circ g の位数: $g^r \equiv 1 \pmod{n}$ となる最小の正整数
- ullet 位数が見つかり r が偶数ならば $(g^{r/2}-1)(g^{r/2}+1)\equiv 0\pmod n$
 - \circ このとき有意な確率で $g^{r/2}-1$ と $g^{r/2}+1$ のどちらかは n の非自明な約数を持つ
 - \circ 見つからなければ別の g でやり直す
 - \circ 最大公約数は古典計算機で高速に求められるので p,q が得られる
- 位数計算問題を量子計算機で解き、全体で $O((\log n)^3)$ で素因数分解できる

QFT (Quantum Fourier Transform)

量子フーリエ変換

- 古典離散フーリエ変換DFTの量子版
- n qubit の $|x
 angle=\sum_{j=0}^{N-1}x_j|j
 angle$, $N:=2^n$, $w=w_N:=\exp(2\pi\sqrt{-1}/N)$ に対して
- ullet QFTは |j
 angle を $(1/\sqrt{N})\sum_{k=0}^{N-1}w^{jk}|k
 angle$ に変換する(|j
 angle という状態と位相の相互変換)
 - \circ $O(n^2)$ 個の量子ゲート, $O(n^2)$ ステップで実現可能

古典DFT

- $ullet x_k \mapsto X_j := F(x_k) = (1/\sqrt{N}) \sum_{k=0}^{N-1} x_k w^{jk}$
- ullet 逆変換は $X_j\mapsto x_k=(1/\sqrt{N})\sum_{j=0}^{N-1}X_jw^{-jk}$
 - $\circ \; \sum_{j} w^{j(l-k)} = N \delta_{lk}$

量子位相推定 QPE (Quantum Phase Estimation)

ユニタリ行列 $oldsymbol{U}$ の固有値を求める

- ullet U の固有値は絶対値が 1 なので $e^{2\pi i heta}$ ($heta \in [0,1)$) と表せる
- ullet U の固有ベクトル $|\psi
 angle$ が与えられたとき $U|\psi
 angle = e^{2\pi i heta} |\psi
 angle$ となる heta を m 桁の精度で求める
 - $ightarrow N=2^m$, $w=\exp(2\pi i/N)$

大まかな手順

- ullet アダマールゲートを m qubitに作用: $|0^{\otimes m}
 angle|\psi
 angle\mapsto (1/\sqrt{N})\sum_{k=0}^{N-1}|k
 angle|\psi
 angle$
- ・ U^k を作用: $|\psi
 angle\mapsto e^{2\pi i \theta k}|\psi
 angle=w^{Nk heta}|\psi
 angle$ した結果: $(1/\sqrt{N})\sum_k w^{Nk heta}|k
 angle\otimes|\psi
 angle$
- 逆QFTを作用: $|k
 angle\mapsto (1/\sqrt{N})\sum_j w^{-jk}|j
 angle$ した結果: $(1/N)\sum_{k,j} w^{k(N\theta-j)}|j
 angle\otimes|\psi
 angle$
- 測定:
 - \circ ある j について N heta=j なら $|j
 angle|\psi
 angle$ が観測されるので j が求まる
 - \circ そうでなくても hetapprox j/N なら40%程度の確率で $|j
 angle|\psi
 angle$ になることが示される

QPEを用いた位数計算の概略

演算 U|x angle:=|gx mod n angle

- このとき固有ベクトル $|w_j\rangle:=(1/\sqrt{r})\sum_{k=0}^{r-1}\exp(-2\pi i k j/r)|g^k \bmod n \rangle$ に対して固有値 $\lambda_j=\exp(2\pi i j/r)$, つまり $U|w_j\rangle=\exp(2\pi i j/r)|w_j\rangle$ 。 $g^r\equiv 1$ なので U は $|g^k \bmod n \rangle$ を $|g^{(k+1) \bmod r} \bmod n \rangle$ に移す.
 - \circ \sum の添え字 k は k-1 に置き換えられて \exp の要素 $\exp(-2\pi i (-1)j/r)=\lambda_j$ が出る
- ullet 固有値の位相に j/r が含まれている
- ullet QPEにより j/r の近似値が求まる
 - 。 $(1/\sqrt{r})\sum_{j}|w_{j}
 angle=|1
 angle$ なので $|w_{j}
 angle$ を知らなくても |1
 angle に対してQPEを適用できる
 - 連分数展開の技法を使って正確な値を求める
- ullet QPEで必要な $U^{2^k}|x
 angle = |g^{2^k}x mod n
 angle$ は $g^{2^k}x mod n$ を古典計算機で事前に求めておく

量子計算機によるECDLPの解読

ECDLPからQPEへ

- ullet $\langle P
 angle$: $E(\mathbb{F}_p)$ 上の素数位数 n の巡回群. $Q \in \langle P
 angle$ に対して Q = xP となる x を見つける
- $|0,0\rangle|0\rangle$ にアダマールゲートを作用させて $(1/n)\sum_{a,b}|a,b\rangle|0\rangle$ を作る
- U|a,b
 angle|0
 angle:=|a,b
 angle|aP+bQ
 angleを作用させる
 - \circ 結果: $(1/n)\sum_{a,b}|a,b
 angle|aP+bQ
 angle=(1/n)\sum_{R\in S_R}|a,b
 angle|R
 angle,$ $S_R:=\{(a,b)\mid aP+bQ=R\}$
- 3番目のqubitを測定するとある R=cP が選ばれ $(1/\sqrt{|S_R|})\sum_{(a,b)\in S_R}|a,b\rangle|R\rangle$ になる(以降 $|R\rangle$ は固定なので省略)
- 1,2番目のqubitに2次元版逆QFTを作用させる
 - $|a,b
 angle \mapsto (1/n) \sum_{j,k} \exp(-2\pi i (aj+bk)/n) |j,k
 angle$
 - \circ 結果: $(1/(n\sqrt{|S_R|}))\sum_{j,k}(\sum_{(a,b)\in S_R}\exp(-2\pi i(aj+bk)/n))|j,k\rangle$
 - この状態を観測する

確率の大きいところ

|j,k angleが観測される確率

- ullet 全体の係数を無視すると、 $v_{j,k}:=\sum_{(a,b)\in S_R} \exp(-2\pi i(aj+bk)/n)$ の絶対値の2乗
- ullet $(a,b)\in S_R$ ならばaP+b(xP)=cP より $a\equiv c-bx\pmod n$
- $\bullet \ \ aj+bk\equiv (c-bx)j+bk=cj+b(k-xj)\ \ (\mathrm{mod}\ \ n)$
- ullet $k-xj\equiv 0\pmod n$ ならば $v_{j,k}=\sum_b \exp(-2\pi i c j/n)=n\exp(-2\pi i c j/n)$
 - 位相が揃って確率が最大化. それ以外は打ち消しあって小さくなる
 - \circ つまり $k \equiv xj \pmod{n}$ となる k,j が選ばれる確率が高い
 - x が求まらなければリトライ
- 全体で $O((\log p)^3)$ で解けることが知られている
- ビット数が少ない分,原理的に素因数分解よりも効率よく求められる

素因数分解の評価

理論的には

ullet Beauregard (2003)の見積もりで n bitの数の素因数分解に 2n+3 bit必要

実際に必要なqubitの見積もり

- Gidney and Ekerå (2019): 2048 bit RSAを解くにはエラー率0.1% 2000万 qubit, 8時間
- Gidney (2025) (未査読): 2048 bit RSAを解くにはエラー率0.1% 100万 qubit, 1週間

実際に解読できたパターン

- 2001 IBM: 15 = 3x5
- 2012 Josephson phase qubi: 21 = 3x7
- 2019 IBM: 35を素因数分解しようとしたが失敗
- ullet (DLP) 2020 NICT : $2^x \equiv 1 \pmod{2}$ は解けたが $4^x \equiv 2 \pmod{7}$ は失敗
- ただし解けた素因数分解は素因数の情報を使ってる(CRYPTREC: それはありなのか)
- もっと大きい素因数分解に成功したものもあるがそれも全数探索 or 素数の性質を使ってる 28/28

共通鍵暗号への影響

攻撃モデル

- Q1:攻撃者は古典オラクルを使う(量子オラクルを使わない)
 - 公開鍵暗号はこちらのモデル
- Q2:攻撃者は量子オラクルを使う
 - 共通鍵暗号はこちらのモデルを使うことが多い(実際に攻撃できないことが多い)

共通鍵暗号の素朴な安全性評価

- ullet 共通鍵暗号の鍵空間が 2^n なら古典では $O(2^n)$
- ullet Groberのアルゴリズムを使う(Q2)と、 $O(2^{n/2})$ で解読
- ullet ハッシュ関数の衝突(h(x)=h(x') となる x
 eq x')を求める問題
 - \circ 古典 $O(2^{n/2})$ で解ける
 - \circ Q2 : $O(2^{n/3})$ で解ける, ただし量子メモリは $O(2^{n/3})$: 現実的でない o 当面大丈夫

量子暗号

量子鍵配送 QKD (Quantum Key Distribution)

- 秘密鍵を共有する技術: 暗号化方式ではない
- 観測の不可逆性(観測すると状態が変わる)や量子もつれやを利用して盗聴を検出する
 - 盗聴されていれば鍵を破棄してやり直す
- 代表的なプロトコル: BB84(実用化済み), E91

通信距離と速度

- 光ファイバー中の減衰や雑音の影響により50~150km, 10Mbps程度が実用的な限界
 - 中継地点で一度古典的に復号して再送する(中継地点が盗聴される可能性はある)
 - 中国では北京~上海間2000kmのネットワーク
 - 人工衛星を信頼ノードとして利用し、地上局と鍵交換
- Twin-Field QKDで1000km達成 (2023)
 - 両端からパルスを発生させて中間地点で干渉させる手法